infrablockchain-docs
en
en
  • InfraBlockchain
    • Learn
      • Architecture
        • Architecture
        • Network Participants
        • Parachain
          • System Parachains
      • Protocol
        • System Token
        • Transaction Fee
        • Proof of Transaction
      • Substrate
        • Learn
          • Basic
            • Cryptography
            • Blockchain Basics
            • Consensus
            • Networks and Nodes
            • Blockchain Transaction
            • Transaction Life Cycle
            • Offchain Operations
            • Light Client
            • Rust for Substrate
            • Introduction to Library
            • Architecture and Rust Libraries
            • File Architecture
            • Accounts, Addresses, and Keys
            • Transaction Format
            • Blockchain Randomness
          • FRAME
            • FRAME Pallets
            • FRAME Macros
            • Custom Pallets
            • Pallet Coupling
            • Origin
            • Events and Erros
            • Runtime Storage
            • State Transitions and Storage
            • SCALE Encoding
            • Weight and Fee
            • Runtime API
            • Runtime Development
          • Account
          • Address Format
          • Glossary
          • CLI
            • Archive
            • Memory Profiler
            • Node Template
            • sidecar
            • srtool
            • Subkey
            • subxt
            • try-runtime
            • tx-wrapper
          • Runtime Development
            • Basics
              • Configure Genesis State
              • Configure Runtime Constants
              • Customize a Chain Spec
              • Import a Pallet
              • Use Helper Function
            • Consensus Model
              • PoW
              • Create a Hybrid Node
            • Offchain Worker
              • Request Offchain HTTP
              • Offchain Indexing
              • Offchain Local Storage
            • Pallet Design
              • Create a Storage Structure
              • Implement Lockable Currency
              • Incorporate Randomness
              • Loose Coupling
              • Tight Coupling
            • Parachain Development
              • Add HRMP Channel
              • Add Paranodes
              • Connect to a Local Relay Chain
              • Convert a Solo Chain
              • Prepare to Launch
              • Select Collator
              • Upgrade a Parachain
            • Storage Migration
              • Basics
              • Trigger Migration
            • Test
              • Basics
              • Test a Transfer Transaction
            • Tools
              • Create a TxWrapper
              • Use Sidecar
              • try-runtime
              • Verify WASM
            • Weigths
              • Benchmark
              • Calculate Fees
              • Use Conditional Weights
              • Use Custom Weights
        • Build
          • Decide What to Build
          • Build Process
          • Determinisitc Runtime
          • Chain Spec
          • Genesis Configuration
          • Application Development
          • RPC
          • Troubleshoot Your Code
        • Tutorials
          • Install
            • Developer Tools
            • Linux
            • macOS
            • Rust Toolchain
            • Issues
            • Windows
          • Quick Start
            • Explore the Code
            • Modify Runtime
            • Start a Node
            • Substrate Basics
          • Build a Blockchain
            • Add Trusted Nodes
            • Authorize Specific Nodes
            • Build a Local Blockchain
            • Simulate Network
            • Upgrade a Running Network
          • Build Application Logic
            • Add a Pallet
            • Add Offchasin Workers
            • Publish Custom Pallets
            • Specify Origin for a Call
            • Use Macros in a Custom Pallet
          • Integrate with Tools
            • Access EVM Accounts
            • EVM Integration
            • Explore Sidecar Endpoints
            • Integrate a Light Client Node
          • Smart Contracts
            • Strategy
            • Build a Token Contract
            • Develop a Smart Contract
            • Prepare Your First Contract
            • Troubleshoot Smart Contracts
            • Use Maps for Storing Values
      • XCM
        • XCM
        • XCM Format
    • Service Chains
      • InfraDID
      • InfraEVM
      • URAuth(Universal Resource Auth)
    • DevOps
      • Build
      • Deploy
      • Monitoring
      • Runtime Upgrade
    • Tutorials
      • Basic
        • How to Interact with System Token
        • How To Pay Transaction Fee
        • How To Vote with TaaV
        • Hot to Get Validator Reward
      • Build
        • Build InfraRelayChain
        • Build Parachain
        • Open Message Passing Channels
        • Transfer Assets with XCM
      • Test
        • Benchmark
        • Check Runtime
        • Debug
        • Simulate Parachains
        • Unit Testing
      • Service Chains
        • Play with InfraDID
          • Build
          • Add Keys
          • Add Service Endpoint
          • Create InfraDID
        • Play with InfraEVM
          • Build
          • Deposit and Withdraw Token
          • Deploy ERC20 Contract
          • Deploy ERC721 Contract
          • Deploy ERC1155 Contract
  • Newnal Data Market
Powered by GitBook
On this page
  • Before you begin
  • What is DID?
  • InfraDID
  • Next steps
  1. InfraBlockchain
  2. Service Chains

InfraDID

This document explains the overall content related to a blockchain specialized for DID (Decentralized Identifier).

PreviousService ChainsNextInfraEVM

Last updated 1 year ago

Before you begin

Before you begin, Make sure you have the following:

What is DID?

DID stands for Decentralized Identifier, representing a new type of identifier that is created, owned, and controlled by the subject of digital identity.

DID is entirely under the control of the DID subject, independent of centralized systems, authorities, or intermediaries. This capability is made possible through blockchain and distributed ledger technologies.

The key features and benefits of DID include:

  • Decentralization: Unlike traditional identifiers issued and managed by centralized systems, DID is issued and managed within a distributed network.

  • Self-Sovereign: DID subjects have complete control over their identifiers. They can create, update, or delete their DID without requiring permission from any authority.

  • Security: DID inherits cryptographic security properties from blockchain or distributed ledger platforms. Additionally, DID works alongside DPKI(Decentralized Public Key Infrastructure) to securely maintain authentication and communication.

  • Interoperability: DID is designed to be interoperable across various systems and networks. This means that a DID generated in one network can be used and recognized in another.

InfraDID

One of the parachains in the InfraBlockchain, the InfraDID Parachain, provides a DID system, and the DIDs offered by the InfraDID Parachain are referred to as InfraDID.

InfraDID Parachain includes various palettes based on its functionality.

Next steps

There is an npm library called that can communicate with InfraDID parachains. You can use it to work with InfraDID in node.js-based systems.

infra-did-js
Building InfraDID Chain
infra-did-js Repository
Building a Parachain
Building an InfraRelayChain
Using the Zombie Network
did-method
infra-did-method
infra-did-pallet